研究方向
理论计算催化、机器学习、分子动力学模拟、量子化学、第一性原理计算。
方向一:基于神经网络势函数的催化大模型开发与动态催化研究。 Development of Catalytic Large Atomic Models and Dynamic Catalysis Research在真实催化反应条件下,模拟反应气氛、温度、压力、外场等因素影响下的复杂催化剂结构是计算催化领域面临的难题,在模拟时间尺度和空间尺度上理论计算都和实际催化场景有巨大差距。为解决此难题,基于神经网络势函数,开发应用于催化领域的全原子大模型,在近似DFT的计算精度下对复杂多尺度催化体系进行大规模、长时间的计算模拟。深入研究催化剂在反应条件下的动态变化。
方向二:电化学界面的恒电势计算方法与电子结构分析。
Constant Potential Calculation Methods and Electronic Structure Analysis of Electrochemical Interfaces电化学界面计算涉及复杂的电势影响、溶剂化效应与双电层模型描述。基于恒电势/电容计算模型,考察负载单原子/团簇催化剂在经典电催化反应过程中的电子结构变化及其对催化反应过程的影响。
欢迎参加南开夏令营/推免面试的同学提前联系! 2025年招生计划: 1.催化神经网络势函数大模型【需要计算机/数学/物理/化学背景,博士/硕士】 2.AI辅助的光刻胶大模型与机器学习【需要计算机/数学/软件/电子/物理方向背景,博士/硕士】
个人简历
2011-2015 山东大学泰山学堂,理学学士
2015-2020 清华大学化学系,理学博士(导师:李隽教授)
2020-2022 清华大学化学系,博士后
2022-至今 beat365中国在线体育特聘研究员
代表性成果
2024年:
Zhou, L.#, Fu, X.-P.#, Wang, R.#, Wang, C.-X., Luo, F., Yan, H., He, Y.*, Jia, C.-J.*, Li, J.*, Liu, J.-C.*, xxxx. Sci. Adv., 2024, (accepted) .
Xu, K., Zhang, Y.-Y., Wang, W.-W., Mi, P., Liu, J.-C.*, Ma, C., Zhang, Y.-W., Jia, C.-J.*, Ma, D.*, Yang, C.-H., Single‐atom Barium Promoter Enormously Enhanced Non‐noble Metal Catalyst for Ammonia Decomposition. Angew. Chem. Int. Ed., 2024, .
Li, Q., Liu, S., Liu, J.-C.*, Li, Z.*, and Li, Y.*, Recycling Sulfur-Poisoned Pd Catalysts via Thermal Atomization for Semi-Hydrogenation of Acetylene. J. Am. Chem. Soc., 2024, .
Wang, X., Guo, T., Shan, Y., Zhang, O., Dong, H.*, Liu, J.-C.*, and Luo, F.*, An aluminum-based hybrid film photoresist for advanced lithography by molecular layer deposition. J. Mater. Chem. C, 2024, .
Liu, H.-X., Wang, W.-W.*, Fu, X.-P., Liu, J.-C.*, and C.-J. Jia*, Direct cleavage of C=O double bond in CO2 by the subnano MoOx surface on Mo2N. Nat. Commun., 2024, 15, 9126.
Li, Q.; Sun, C.; Sun, X.; Yin, Z.; Du, Y.*; Liu, J.-C.*; Luo, F.*, Synthesis of palladium-rare earth alloy as a high-performance bifunctional catalyst for direct ethanol fuel cells. Nano Research, 2024.
Yan, H.; Lei, H.; Qin, X.; Liu, J.-C.*; Cai, L.; Hu, S.; Xiao, Z.; Peng, F.; Wang, W.-W.; Jin, Z.; Yi, X.; Zheng A.; Ma C.; Jia C.-J.*; Zeng J.*, Facet‐dependent diversity of Pt–O coordination for Pt 1/CeO 2 catalysts achieved by oriented atomic deposition. Angew. Chem. Int. Ed., 2024, e202411264.
Jiang, Y.; Liang, Z.; Liu, J.-C.*; Fu, H.; Yan, C.-H.; Du, Y.*, Stimulating Electron Delocalization of Lanthanide Elements through High-Entropy Confinement to Promote Electrocatalytic Water Splitting. ACS Nano, 2024, 18 (29), 19137-19149.
Li, Z.-X.; Fu, X.-P.; Ma, C.; Wang, W.-W.*; Liu, J.-C.*; Jia, C.-J.*, Identifying the key structural features of Ni-based catalysts for the CO2 methanation reaction. J. Catal., 2024, 436, 115585.
Xu, K.#; Liu, J.-C.#; Wang, W.-W.; Zhou, L.-L.; Ma, C.; Guan, X.; Wang, F. R.*; Li, J.*; Jia, C.-J.*; Yan C.-H., Catalytic properties of trivalent rare-earth oxides with intrinsic surface oxygen vacancy, Nat. Commun., 2024, 15 (1), 5751.
Li, Q.; Zhang, B.; Sun, C.; Sun, X.; Li, Z.; Du, Y.*; Liu, J.-C.*; Luo, F.*, Enhanced Alkaline Hydrogen Evolution Reaction via Electronic Structure Regulation: Activating PtRh with Rare Earth Tm Alloying. Small, 2024, 2400662.
Liang, Z.; Song, L.; Jiang, Y.; Liu, J.-C.*; Zhang, Y.; Zhang, Q.; Yan, C.-H.; Du, Y.*, Penta-Coordinated Y Sites Modulated Single Bi Sites for Promoted Selectivity of Electrochemical CO2 Reduction. Adv. Funct. Mater., 2024, 34(9), 2311087.
2023年:
Liu, J.-C.*, Luo, F., Li, J., Electrochemical Potential-Driven Shift of Frontier Orbitals in M-N-C Single-Atom Catalysts Leading to Inverted Adsorption Energies. J. Am. Chem. Soc. 2023, 145(46), 25264-25273.
Fu, X.-P.; Wu C.-P.; Wang W.-W.; Jin Z.; Liu, J-C.*; Ma C.*; Jia, C.-J.*; Boosting reactivity of water-gas shift reaction by synergistic function over CeO2-x/CoO1-x/Co dual interfacial structures. Nat. Commun., 2023, 14(1), 6851.
Zhang, S.; Yin, L.; Wang, S.; Liu, J.-C.*; Zhang, Y.; Wen, Y.; Zhang, Q.; Du, Y.*, Ternary Rare Earth Alloy Pt3-xIrxSc Nanoparticles Modulate Negatively Charged Pt via Charge Transfer to Facilitate pH-universal Hydrogen Evolution. ACS Nano, 2023, 17(22), 23103-23114.
Li, Q.; Sun, C.; Fu, H.; Zhang, S.; Sun, X.; Liu, J.-C.*; Du, Y.*; Luo, F.*, Enhanced Alkaline Hydrogen Evolution Reaction through Lanthanide‐Modified Rhodium Intermetallic Catalysts. Small, 2023, 2307052.
Liu, T.; Zhao, X.; Liu, X.*; Xiao, W.*; Luo, Z.; Wang, W.*; Zhang, Y.; Liu, J.-C.*, Understanding the hydrogen evolution reaction activity of doped single-atom catalysts on two-dimensional GaPS4 by DFT and machine learning. Journal of Energy Chemistry, 2023, 81, 93-100.
Liu, J.-C.; Xiao, H.; Zhao, X.-K.; Zhang, N.-N.; Liu, Y.; Xing, D.-H.; Yu, X.; Hu, H.-S.; Li, J.*, Computational Prediction of Graphdiyne-Supported Three-Atom Single-Cluster Catalysts. CCS Chemistry, 2023, 5 (1), 152-163.
Fu, N; Liang, X.; Wang, X.; Gan, T.; Ye, C.; Li, Z.*, Liu, J.-C.*; Li Y.*, Controllable Conversion of Platinum Nanoparticles to Single Atoms in Pt/CeO2 by Laser Ablation for Efficient CO Oxidation, J. Am. Chem. Soc., 2023,145 (17), 9540-9547.
2022年: Wang, X.#; Fu, N.#; Liu, J.-C.#; Yu, K.#; Li, Z.*; Li, Y.*, Atomic replacement of PtNi nanoalloys within Zn-ZIF-8 for the fabrication of multi-site CO2 reduction electrocatalyst. J. Am. Chem. Soc., 2022, 144 (50), 23223-23229.
Liu, J.-C.#; Luo, L.#; Xiao, H.; Zhu, J.; He, Y.*; Li, J.*, Metal-Affinity of Support Dictates Sintering of Gold Catalysts. J. Am. Chem. Soc., 2022, 144, 45, 20601–20609
Yan, H.#; Qin, X.#; Liu, J.-C.#; Cai, L.; Xu, P.; Song, J.-J.; Ma, C.; Wang, W.-W.; Jin, Z.; Jia, C.-J.*, Releasing the limited catalytic activity of CeO2-supported noble metal catalysts via UV-induced deep dechlorination.J. Catal., 2022. 413, 703-712.
Liu, X.; Liu, T.; Xiao, W.; Wang, W.*; Zhang, Y.; Wang, G.; Luo, Z.; Liu, J.-C.*, Strain engineering in single-atom catalysts: GaPS 4 for bifunctional oxygen reduction and evolution. Inorg. Chem. Front., 2022, 9 (16), 4272-4280.
Deng, Y.#; Guo, Y.#; Jia, Z.#; Liu, J.-C.#; Guo, J.; Cai, X.; Dong, C.; Wang, M.; Li, C.; Diao, J.; Jiang, Z.; Xie, J.; Wang, N.; Xiao, H.; Xu, B.; Zhang, H.; Liu, H.*; Li, J.*; Ma, D.*, Few-Atom Pt Ensembles Enable Efficient Catalytic Cyclohexane Dehydrogenation for Hydrogen Production. J. Am. Chem. Soc., 2022, 144 (8), 3535-3542.
2016-2021年:
Wang, V.*; Xu, N.; Liu, J.-C.; Tang, G.; Geng W.-T., VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun., 2021, 267, 108033.
Liu, J.-C.; Xiao, H.*; Li, J.*, Constructing High-Loading Single-Atom/Cluster Catalysts via an Electrochemical Potential Window Strategy.J. Am. Chem. Soc., 2020, 142 (7), 3375-3383.
Duan, H.#; Liu, J.-C.#; Xu, M.#; Zhao, Y.; Ma, X.-L.; Dong, J.; Zheng, X.; Zheng, J.; Allen, C. S.; Danaie, M.; Peng, Y.-K.; Issariyakul, T.; Chen, D.; Kirkland, A. I.; Buffet, J.-C.; Li, J.*; Tsang, S. C. E.*; O’Hare, D.*, Molecular nitrogen promotes catalytic hydrodeoxygenation. Nat. Catal., 2019, 2 (12), 1078-1087.
Lang, R.#; Xi, W.#; Liu, J.-C.#; ....Qiao, B.*, Li, J.*, Zhang, T.*, Non defect-stabilized thermally stable single-atom catalyst. Nat. Commun., 2019, 10 (1), 234.
Liu, J.-C.; Tang, Y.; Wang, Y.-G.; Zhang, T.; Li, J.*, Theoretical understanding of the stability of single-atom catalysts. Natl. Sci. Rev., 2018, 5 (5), 638-641.
Liu, J.-C.; Ma, X.-L.; Li, Y.; Wang, Y.-G.; Xiao, H.; Li, J.*, Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat. Commun., 2018, 9 (1), 1610.
He, Y.#; Liu, J.-C.#; Luo, L.#; Wang, Y.-G.; Zhu, J.; Du, Y.; Li, J.*; Mao, S. X.*; Wang, C.*, Size-dependent dynamic structures of supported gold nanoparticles in CO oxidation reaction condition.Proc. Natl. Acad. Sci. U.S.A., 2018, 115 (30), 7700-7705.
Liu, J.-C.; Wang, Y.-G.*; Li, J.*, Toward Rational Design of Oxide-Supported Single-Atom Catalysts: Atomic Dispersion of Gold on Ceria.J. Am. Chem. Soc., 2017, 139 (17), 6190-6199.
Liu, J.-C.; Tang, Y.; Chang, C.-R.*; Wang, Y.-G.*; Li, J.*, Mechanistic Insights into Propene Epoxidation with O2–H2O Mixture on Au7/α-Al2O3: A Hydroproxyl Pathway from ab Initio Molecular Dynamics Simulations.ACS Catal., 2016, 6 (4), 2525-2535.
|